ESP-1ch-Gateway-v5.0--OLD/ESP-sc-gway/_stateMachine.ino

949 wiersze
29 KiB
C++

// 1-channel LoRa Gateway for ESP8266
// Copyright (c) 2016, 2017, 2018 Maarten Westenberg version for ESP8266
// Version 5.3.3
// Date: 2018-08-25
//
// based on work done by Thomas Telkamp for Raspberry PI 1ch gateway
// and many others.
//
// All rights reserved. This program and the accompanying materials
// are made available under the terms of the MIT License
// which accompanies this distribution, and is available at
// https://opensource.org/licenses/mit-license.php
//
// NO WARRANTY OF ANY KIND IS PROVIDED
//
// Author: Maarten Westenberg (mw12554@hotmail.com)
//
// This file contains the state machine code enabling to receive
// and transmit packages/messages.
// ========================================================================================
//
// ----------------------------------------------------------------------------
// stateMachine handler of the state machine.
// We use ONE state machine for all kind of interrupts. This assures that we take
// the correct action upon receiving an interrupt.
//
// _event is the software interrupt: If set this function is executed from loop(),
// the function should itself take care of setting or resetting the variable.
//
// STATE MACHINE
// The program uses the following state machine (in _state), all states
// are done in interrupt routine, only the follow-up of S-RXDONE is done
// in the main loop() program. This is because otherwise the interrupt processing
// would take too long to finish
//
// So _state has one of the following state values:
//
// S-INIT=0, The commands in this state are executed only once
// - Goto S_SCAN
//
// S-SCAN, CadScanner() part
// - Upon CDDECT (int1) goto S_RX,
// - upon CDDONE (int0) goto S_CAD, walk through all SF until CDDETD
// - Else stay in SCAN state
//
// S-CAD,
// - Upon CDDECT (int1) goto S_RX,
// - Upon CDDONE (int0) goto S_SCAN, start with SF7 recognition again
//
// S-RX, Received CDDECT so message detected, RX cycle started.
// - Upon RXDONE (int0) package read. If read ok continue to read message
// - upon RXTOUT (int1) error, goto S_SCAN
//
// S-TX Transmitting a message
// - Upon TXDONE goto S_SCAN
//
// S-TXDONE Transmission complete by loop() now again in interrupt
// - Set the Mask
// - reset the Flags
// - Goto either SCAN or RX
//
// This interrupt routine has been kept as simple and short as possible.
// If we receive an interrupt that does not below to a _state then print error.
// _event is a special variable which indicate that an interrupt event has happened
// and we need to take action OR that we generate a soft interrupt for state machine.
//
// NOTE: We may clear the interrupt but leave the flag for the moment.
// The eventHandler should take care of repairing flags between interrupts.
// ----------------------------------------------------------------------------
void stateMachine()
{
// Determine what interrupt flags are set
//
uint8_t flags = readRegister(REG_IRQ_FLAGS);
uint8_t mask = readRegister(REG_IRQ_FLAGS_MASK);
uint8_t intr = flags & ( ~ mask ); // Only react on non masked interrupts
uint8_t rssi;
_event=0; // Reset the interrupt detector
#if DUSB>=1
if (intr != flags) {
Serial.print(F("FLAG ::"));
SerialStat(intr);
}
#endif
// If Hopping is selected AND if there is NO event interrupt detected
// and the state machine is called anyway
// then we know its a soft interrupt and we do nothing and return to main loop.
//
if ((_hop) && (intr == 0x00) )
{
// eventWait is the time since we have had a CDDETD event (preamble detected)
// If we are not in scanning state, and there will be an interrupt coming,
// In state S_RX it could be RXDONE in which case allow kernel time
//
if ((_state == S_SCAN) || (_state == S_CAD)) {
_event=0;
uint32_t eventWait = EVENT_WAIT;
switch (_state) {
case S_INIT: eventWait = 0; break;
// Next two are most important
case S_SCAN: eventWait = EVENT_WAIT * 1; break;
case S_CAD: eventWait = EVENT_WAIT * 1; break;
case S_RX: eventWait = EVENT_WAIT * 8; break;
case S_TX: eventWait = EVENT_WAIT * 1; break;
case S_TXDONE: eventWait = EVENT_WAIT * 4; break;
default:
eventWait=0;
#if DUSB>=1
Serial.print(F("DEFAULT :: "));
SerialStat(intr);
#endif
}
// doneWait is the time that we received CDDONE interrupt
// So we init the wait time for RXDONE based on the current SF.
// As for highter CF it takes longer to receive symbols
// Assume symbols in SF8 take twice the time of SF7
//
uint32_t doneWait = DONE_WAIT; // Initial value
switch (sf) {
case SF7: break;
case SF8: doneWait *= 2; break;
case SF9: doneWait *= 4; break;
case SF10: doneWait *= 8; break;
case SF11: doneWait *= 16; break;
case SF12: doneWait *= 32; break;
default:
doneWait *= 1;
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_PRE )) {
Serial.print(F("PRE:: DEF set"));
Serial.println();
}
#endif
break;
}
// If micros is starting over again after 51 minutes
// it's value is smaller than an earlier value of eventTime/doneTime
//
if (eventTime > micros()) eventTime=micros();
if (doneTime > micros()) doneTime=micros();
if (((micros() - doneTime) > doneWait ) &&
(( _state == S_SCAN ) || ( _state == S_CAD )))
{
_state = S_SCAN;
hop(); // increment ifreq = (ifreq + 1) % NUM_HOPS ;
cadScanner(); // Reset to initial SF, leave frequency "freqs[ifreq]"
#if DUSB>=1
if (( debug >= 1 ) && ( pdebug & P_PRE )) {
Serial.print(F("DONE :: "));
SerialStat(intr);
}
#endif
eventTime=micros(); // reset the timer on timeout
doneTime=micros(); // reset the timer on timeout
return;
}
// If timeout occurs and still no _event, then hop
// and start scanning again
//
if ((micros() - eventTime) > eventWait )
{
_state = S_SCAN;
hop(); // increment ifreq = (ifreq + 1) % NUM_HOPS ;
cadScanner(); // Reset to initial SF, leave frequency "freqs[ifreq]"
#if DUSB>=1
if (( debug >= 2 ) && ( pdebug & P_PRE )) {
Serial.print(F("HOP :: "));
SerialStat(intr);
}
#endif
eventTime=micros(); // reset the timer on timeout
doneTime=micros(); // reset the timer on timeout
return;
}
// If we are here, NO timeout has occurred
// So we need to return to the main State Machine
// as there was NO interrupt
#if DUSB>=1
if (( debug>=3 ) && ( pdebug & P_PRE )) {
Serial.print(F("PRE:: eventTime="));
Serial.print(eventTime);
Serial.print(F(", micros="));
Serial.print(micros());
Serial.print(F(": "));
SerialStat(intr);
}
#endif
} // if SCAN or CAD
// else, S_RX of S_TX for example
else {
//yield(); // May take too much time for RX
} // else S_RX or S_TX, TXDONE
yield();
}// intr==0 && _hop
// ================================================================
// This is the actual state machine of the gateway
// and its next actions are depending on the state we are in.
// For hop situations we do not get interrupts, so we have to
// simulate and generate events ourselves.
//
switch (_state)
{
// --------------------------------------------------------------
// If the state is init, we are starting up.
// The initLoraModem() function is already called in setup();
//
case S_INIT:
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_PRE )) {
Serial.println(F("S_INIT"));
}
#endif
// new state, needed to startup the radio (to S_SCAN)
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF ); // Clear ALL interrupts
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00 ); // Clear ALL interrupts
_event=0;
break;
// --------------------------------------------------------------
// In S_SCAN we measure a high RSSI this means that there (probably) is a message
// coming in at that freq. But not necessarily on the current SF.
// If so find the right SF with CDDETD.
//
case S_SCAN:
//
// Intr==IRQ_LORA_CDDETD_MASK
// We detected a message on this frequency and SF when scanning
// We clear both CDDETD and swich to reading state to read the message
//
if (intr & IRQ_LORA_CDDETD_MASK) {
_state = S_RX; // Set state to receiving
// Set RXDONE interrupt to dio0, RXTOUT to dio1
writeRegister(REG_DIO_MAPPING_1, (
MAP_DIO0_LORA_RXDONE |
MAP_DIO1_LORA_RXTOUT |
MAP_DIO2_LORA_NOP |
MAP_DIO3_LORA_CRC));
// Since new state is S_RX, accept no interrupts except RXDONE or RXTOUT
// HEADER and CRCERR
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) ~(
IRQ_LORA_RXDONE_MASK |
IRQ_LORA_RXTOUT_MASK |
IRQ_LORA_HEADER_MASK |
IRQ_LORA_CRCERR_MASK));
// Starting with version 5.0.1 the waittime is dependent on the SF
// So for SF12 we wait longer (2^7 == 128 uSec) and for SF7 4 uSec.
//delayMicroseconds( (0x01 << ((uint8_t)sf - 5 )) );
//if (_cad) // XXX 180520 make sure we start reading asap in hop
// delayMicroseconds( RSSI_WAIT ); // Wait some microseconds less
rssi = readRegister(REG_RSSI); // Read the RSSI
_rssi = rssi; // Read the RSSI in the state variable
_event = 0; // Make 0, as soon as we have an interrupt
detTime = micros(); // mark time that preamble detected
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_SCAN )) {
Serial.print(F("SCAN:: "));
SerialStat(intr);
}
#endif
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF ); // reset all interrupt flags
opmode(OPMODE_RX_SINGLE); // set reg 0x01 to 0x06 for receiving
}//if
// CDDONE
// We received a CDDONE int telling us that we received a message on this
// frequency and possibly on one of its SF. Only when the incoming message
// matches the SF then also CDDETD is raised.
// If so, we switch to CAD state where we will wait for CDDETD event.
//
else if (intr & IRQ_LORA_CDDONE_MASK) {
opmode(OPMODE_CAD);
rssi = readRegister(REG_RSSI); // Read the RSSI
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_SCAN )) {
Serial.print(F("SCAN:: CDDONE: "));
SerialStat(intr);
}
#endif
// We choose the generic RSSI as a sorting mechanism for packages/messages
// The pRSSI (package RSSI) is calculated upon successful reception of message
// So we expect that this value makes little sense for the moment with CDDONE.
// Set the rssi as low as the noise floor. Lower values are not recognized then.
// Every cycle starts with ifreq==0 and sf=SF7 (or the set init SF)
//
//if ( rssi > RSSI_LIMIT ) // Is set to 35
if ( rssi > (RSSI_LIMIT - (_hop * 7))) // Is set to 35, or 29 for HOP
{
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_SCAN )) {
Serial.print(F("SCAN:: -> CAD: "));
SerialStat(intr);
}
#endif
_state = S_CAD; // promote to next level
_event=0;
}
// If the RSSI is not big enough we skip the CDDONE
// and go back to scanning
else {
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_SCAN )) {
Serial.print("SCAN:: rssi=");
Serial.print(rssi);
Serial.print(F(": "));
SerialStat(intr);
}
#endif
_state = S_SCAN;
//_event=1; // loop() scan until CDDONE
}
// Clear the CADDONE flag
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF);
doneTime = micros(); // We need CDDONE or other intr to reset timeout
}//SCAN CDDONE
// So if we are here then we are in S_SCAN and the interrupt is not
// CDDECT or CDDONE. it is probably soft interrupt _event==1
// So if _hop we change the frequency and restart the
// interrupt in order to check for CDONE on other frequencies
// if _hop we start at the next frequency, hop () sets the sf to SF7.
// If we are at the end of all frequencies, reset frequencies and sf
// and go to S_SCAN state.
//
// Note:: We should make sure that all frequencies are scanned in a row
// and when we switch to ifreq==0 we should stop for a while
// to allow system processing.
// We should make sure that we enable webserver etc every once in a while.
// We do this by changing _event to 1 in loop() only for _hop and
// use _event=0 for non hop.
//
else if (intr == 0x00)
{
_event=0; // XXX 26/12/2017 !!! NEED
}
// Unkown Interrupt, so we have an error
//
else {
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_SCAN )) {
Serial.print(F("SCAN unknown:: "));
SerialStat(intr);
}
#endif
_state=S_SCAN;
//_event=1; // XXX 06/03 loop until interrupt
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF);
}
break; // S_SCAN
// --------------------------------------------------------------
// S_CAD: In CAD mode we scan every SF for high RSSI until we have a DETECT.
// Reason is the we received a CADDONE interrupt so we know a message is received
// on the frequency but may be on another SF.
//
// If message is of the right frequency and SF, IRQ_LORA_CDDETD_MSAK interrupt
// is raised, indicating that we can start beging reading the message from SPI.
//
// DIO0 interrupt IRQ_LORA_CDDONE_MASK in state S_CAD==2 means that we might have
// a lock on the Freq but not the right SF. So we increase the SF
//
case S_CAD:
// Intr=IRQ_LORA_CDDETD_MASK
// We have to set the sf based on a strong RSSI for this channel
// Also we set the state to S_RX and start receiving the message
//
if (intr & IRQ_LORA_CDDETD_MASK) {
// Set RXDONE interrupt to dio0, RXTOUT to dio1
writeRegister(REG_DIO_MAPPING_1, (
MAP_DIO0_LORA_RXDONE |
MAP_DIO1_LORA_RXTOUT |
MAP_DIO2_LORA_NOP |
MAP_DIO3_LORA_CRC ));
// Accept no interrupts except RXDONE or RXTOUT
_event=0;
// if CDECT, make state S_RX so we wait for RXDONE intr
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) ~(
IRQ_LORA_RXDONE_MASK |
IRQ_LORA_RXTOUT_MASK |
IRQ_LORA_HEADER_MASK |
IRQ_LORA_CRCERR_MASK ));
// Reset all interrupts as soon as possible
// But listen ONLY to RXDONE and RXTOUT interrupts
//writeRegister(REG_IRQ_FLAGS, IRQ_LORA_CDDETD_MASK | IRQ_LORA_RXDONE_MASK);
// If we want to reset CRC, HEADER and RXTOUT flags as well
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF ); // XXX 180326, reset all CAD Detect interrupt flags
//_state = S_RX; // XXX 180521 Set state to start receiving
opmode(OPMODE_RX_SINGLE); // set reg 0x01 to 0x06, initiate READ
delayMicroseconds( RSSI_WAIT ); // Wait some microseconds less
//delayMicroseconds( (0x01 << ((uint8_t)sf - 5 )) );
rssi = readRegister(REG_RSSI); // Read the RSSI
_rssi = rssi; // Read the RSSI in the state variable
detTime = micros();
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_CAD )) {
Serial.print(F("CAD:: "));
SerialStat(intr);
}
#endif
_state = S_RX; // Set state to start receiving
}// CDDETD
// Intr == CADDONE
// So we scan this SF and if not high enough ... next
//
else if (intr & IRQ_LORA_CDDONE_MASK) {
// If this is not SF12, increment the SF and try again
// We expect on other SF get CDDETD
//
if (((uint8_t)sf) < SF12) {
sf = (sf_t)((uint8_t)sf+1); // Increment sf
setRate(sf, 0x04); // Set SF with CRC==on
// reset interrupt flags for CAD Done
_event=0; // XXX 180324, when increasing SF loop, ws 0x00
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00); // Reset the interrupt mask
//writeRegister(REG_IRQ_FLAGS, IRQ_LORA_CDDONE_MASK | IRQ_LORA_CDDETD_MASK);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF ); // This will prevent the CDDETD from being read
opmode(OPMODE_CAD); // Scanning mode
delayMicroseconds(RSSI_WAIT);
rssi = readRegister(REG_RSSI); // Read the RSSI
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_CAD )) {
Serial.print(F("S_CAD:: CDONE, SF="));
Serial.println(sf);
}
#endif
}
// If we reach SF12, we should go back to SCAN state
//
else {
// Reset Interrupts
_event=1; // reset soft intr, to state machine again
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00); // Reset the interrupt mask
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF ); // or IRQ_LORA_CDDONE_MASK
_state = S_SCAN; // As soon as we reach SF12 do something
sf = SF7;
cadScanner(); // Which will reset SF to SF7
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_CAD )) {
Serial.print(F("CAD->SCAN:: "));
SerialStat(intr);
}
#endif
}
doneTime = micros(); // We need CDDONE or other intr to reset timeout
} //CAD CDDONE
// if this interrupt is not CDECT or CDDONE then probably is 0x00
// This means _event was set but there was no real interrupt (yet).
// So we clear _event and wait for next (soft) interrupt.
// We stay in the CAD state because CDDONE means something is
// coming on this frequency so we wait on CDECT.
//
else if (intr == 0x00) {
#if DUSB>=0
if (( debug>=3 ) && ( pdebug & P_CAD )) {
Serial.println("Err CAD:: intr is 0x00");
}
#endif
_event=1; // Stay in CAD _state until real interrupt
}
// else we do not recognize the interrupt. We print an error
// and restart scanning. If hop we even start at ifreq==1
//
else {
#if DUSB>=1
if (( debug>=0) && ( pdebug & P_CAD )) {
Serial.print(F("Err CAD: Unknown::"));
SerialStat(intr);
}
#endif
_state = S_SCAN;
sf = SF7;
cadScanner(); // Scan and set SF7
// Reset Interrupts
_event=1; // If unknown interrupt, restarts
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00); // Reset the interrupt mask
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // Reset all interrupts
}
break; //S_CAD
// --------------------------------------------------------------
// If we receive an RXDONE interrupt on dio0 with state==S_RX
// So we should handle the received message
// Else if it is RXTOUT interrupt
// So we handle this, and get modem out of standby
// Else
// Go back to SCAN
//
case S_RX:
if (intr & IRQ_LORA_RXDONE_MASK) {
#if CRCCHECK==1
// We have to check for CRC error which will be visible AFTER RXDONE is set.
// CRC errors might indicate that the reception is not OK.
// Could be CRC error or message too large.
// CRC error checking requires DIO3
//
if (intr & IRQ_LORA_CRCERR_MASK) {
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_RX )) {
Serial.print(F("Rx CRC err: "));
SerialStat(intr);
}
#endif
if (_cad) {
sf = SF7;
_state = S_SCAN;
cadScanner();
}
else {
_state = S_RX;
rxLoraModem();
}
// Reset interrupts
_event=0; // CRC error
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00); // Reset the interrupt mask
writeRegister(REG_IRQ_FLAGS, (uint8_t)(
IRQ_LORA_RXDONE_MASK |
IRQ_LORA_RXTOUT_MASK |
IRQ_LORA_HEADER_MASK |
IRQ_LORA_CRCERR_MASK ));
break;
}// RX-CRC
#endif // CRCCHECK
// If we are here, no CRC error occurred, start timer
#if DUSB>=1
unsigned long ffTime = micros();
#endif
// There should not be an error in the message
LoraUp.payLoad[0]= 0x00; // Empty the message
// If receive S_RX error,
// - print Error message
// - Set _state to SCAN
// - Set _event=1 so that we loop until we have an interrupt
// - Reset the interrupts
// - break
if((LoraUp.payLength = receivePkt(LoraUp.payLoad)) <= 0) {
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_RX )) {
Serial.print(F("sMachine:: Error S-RX: "));
Serial.print(F("payLength="));
Serial.print(LoraUp.payLength);
Serial.println();
}
#endif
_event=1;
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00); // Reset the interrupt mask
//writeRegister(REG_IRQ_FLAGS, (uint8_t)(
// IRQ_LORA_RXDONE_MASK |
// IRQ_LORA_RXTOUT_MASK |
// IRQ_LORA_HEADER_MASK |
// IRQ_LORA_CRCERR_MASK ));
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF);
_state = S_SCAN;
break;
}
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_RX )) {
Serial.print(F("RXDONE in dT="));
Serial.print(ffTime - detTime);
Serial.print(F(": "));
SerialStat(intr);
}
#endif
// Do all register processing in this section
uint8_t value = readRegister(REG_PKT_SNR_VALUE); // 0x19;
if ( value & 0x80 ) { // The SNR sign bit is 1
value = ( ( ~value + 1 ) & 0xFF ) >> 2; // Invert and divide by 4
LoraUp.snr = -value;
}
else {
// Divide by 4
LoraUp.snr = ( value & 0xFF ) >> 2;
}
// Packet RSSI
LoraUp.prssi = readRegister(REG_PKT_RSSI); // read register 0x1A, packet rssi
// Correction of RSSI value based on chip used.
if (sx1272) { // Is it a sx1272 radio?
LoraUp.rssicorr = 139;
} else { // Probably SX1276 or RFM95
LoraUp.rssicorr = 157;
}
LoraUp.sf = readRegister(REG_MODEM_CONFIG2) >> 4;
// If read was successful, read the package from the LoRa bus
//
if (receivePacket() <= 0) { // read is not successful
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_RX )) {
Serial.println(F("sMach:: Error receivePacket"));
}
#endif
}
// Set the modem to receiving BEFORE going back to user space.
//
if ((_cad) || (_hop)) {
_state = S_SCAN;
sf = SF7;
cadScanner();
}
else {
_state = S_RX;
rxLoraModem();
}
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // Reset the interrupt mask
eventTime=micros(); //There was an event for receive
_event=0;
}// RXDONE
// RXOUT:
// We did receive message receive timeout
// This is the most common event in hop mode, possibly due to the fact
// that receiving has started too late in the middle of a message
// (according to the documentation). So is there a way to start receiving
// immediately without delay.
//
else if (intr & IRQ_LORA_RXTOUT_MASK) {
// Make sure we reset all interrupts
// and get back to scanning
_event=0; // Is set by interrupt handlers
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00 );
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // reset all interrupts
// If RXTOUT we put the modem in cad state and reset to SF7
// If a timeout occurs here we reset the cadscanner
//
if ((_cad) || (_hop)) {
// Set the state to CAD scanning
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_RX )) {
Serial.print(F("RXTOUT:: "));
SerialStat(intr);
}
#endif
sf = SF7;
cadScanner(); // Start the scanner after RXTOUT
_state = S_SCAN; // New state is scan
}
// If not in cad mode we are in single channel single sf mode.
//
else {
_state = S_RX; // Receive when interrupted
rxLoraModem();
}
eventTime=micros(); //There was an event for receive
doneTime = micros(); // We need CDDONE or other intr to reset timeout
}// RXTOUT
else if (intr & IRQ_LORA_HEADER_MASK) {
// This interrupt means we received an header successfully
// which is normall an indication of RXDONE
//writeRegister(REG_IRQ_FLAGS, IRQ_LORA_HEADER_MASK);
#if DUSB>=1
if (( debug>=3 ) && ( pdebug & P_RX )) {
Serial.print(F("RX HEADER:: "));
SerialStat(intr);
}
#endif
//_event=1;
}
// If we did not receive a hard interrupt
// Then probably do not do anything, because in the S_RX
// state there always comes a RXTOUT or RXDONE interrupt
//
else if (intr == 0x00) {
#if DUSB>=1
if (( debug>=3) && ( pdebug & P_RX )) {
Serial.print(F("S_RX no INTR:: "));
SerialStat(intr);
}
#endif
}
// The interrupt received is not RXDONE, RXTOUT or HEADER
// therefore we wait. Make sure to clear the interrupt
// as HEADER interrupt comes just before RXDONE
else {
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_RX )) {
Serial.print(F("S_RX:: no RXDONE, RXTOUT, HEADER:: "));
SerialStat(intr);
}
#endif
//writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00 );
//writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF);
}// int not RXDONE or RXTOUT
break; // S_RX
// --------------------------------------------------------------
// Start te transmission of a message in state S-TX
// This is not an interrupt state, we use this state to start transmission
// the interrupt TX-DONE tells us that the transmission was successful.
// It therefore is no use to set _event==1 as transmission might
// not be finished in the next loop iteration
//
case S_TX:
// We need a timeout for this case. In case there does not come an interrupt,
// then there will nog be a TXDONE but probably another CDDONE/CDDETD before
// we have a timeout in the main program (Keep Alive)
if (intr == 0x00) {
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_TX )) {
Serial.println(F("TX:: 0x00"));
}
#endif
_event=1;
_state=S_TXDONE;
}
// Set state to transmit
_state = S_TXDONE;
// Clear interrupt flags and masks
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // reset interrupt flags
// Initiate the transmission of the buffer (in Interrupt space)
// We react on ALL interrupts if we are in TX state.
txLoraModem(
LoraDown.payLoad,
LoraDown.payLength,
LoraDown.tmst,
LoraDown.sfTx,
LoraDown.powe,
LoraDown.fff,
LoraDown.crc,
LoraDown.iiq
);
// After filling the buffer we only react on TXDONE interrupt
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_TX )) {
Serial.print(F("T TX done:: "));
SerialStat(intr);
}
#endif
// More or less start at the "case TXDONE:" below
_state=S_TXDONE;
_event=1; // Or remove the break below
break; // S_TX
// ---------------------------------------------------
// AFter the transmission is completed by the hardware,
// the interrupt TXDONE is raised telling us that the tranmission
// was successful.
// If we receive an interrupt on dio0 _state==S_TX it is a TxDone interrupt
// Do nothing with the interrupt, it is just an indication.
// send Packet switch back to scanner mode after transmission finished OK
//
case S_TXDONE:
if (intr & IRQ_LORA_TXDONE_MASK) {
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_TX )) {
Serial.print(F("T TXDONE:: rcvd="));
Serial.print(micros());
Serial.print(F(", diff="));
Serial.println(micros()-LoraDown.tmst);
if (debug>=2) Serial.flush();
}
#endif
// After transmission reset to receiver
if ((_cad) || (_hop)) { // XXX 26/02
// Set the state to CAD scanning
_state = S_SCAN;
sf = SF7;
cadScanner(); // Start the scanner after TX cycle
}
else {
_state = S_RX;
rxLoraModem();
}
_event=0;
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // reset interrupt flags
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_TX )) {
Serial.println(F("T TXDONE:: done OK"));
}
#endif
}
// If a soft _event==0 interrupt and no transmission finished:
else if ( intr != 0 ) {
#if DUSB>=1
if (( debug>=0 ) && ( pdebug & P_TX )) {
Serial.print(F("T TXDONE:: unknown int:"));
SerialStat(intr);
}
#endif
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // reset interrupt flags
_event=0;
_state=S_SCAN;
}
// intr == 0
else {
// Increase timer. If timer exceeds certain value (7 seconds!), reset
// After sending a message with S_TX, we have to receive a TXDONE interrupt
// within 7 seconds according to spec, of here is a problem.
if ( sendTime > micros() ) sendTime = 0; // This could be omitted for usigned ints
if (( _state == S_TXDONE ) && (( micros() - sendTime) > 7000000 )) {
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_TX )) {
Serial.println(F("T TXDONE:: reset TX"));
Serial.flush();
}
#endif
startReceiver();
}
#if DUSB>=1
if (( debug>=3 ) && ( pdebug & P_TX )) {
Serial.println(F("T TXDONE:: No Interrupt"));
}
#endif
}
break; // S_TXDONE
// --------------------------------------------------------------
// If _STATE is in undefined state
// If such a thing happens, we should re-init the interface and
// make sure that we pick up next interrupt
default:
#if DUSB>=1
if (( debug>=0) && ( pdebug & P_PRE )) {
Serial.print("ERR state=");
Serial.println(_state);
}
#endif
if ((_cad) || (_hop)) {
#if DUSB>=1
if (debug>=0) {
Serial.println(F("default:: Unknown _state "));
SerialStat(intr);
}
#endif
_state = S_SCAN;
sf = SF7;
cadScanner(); // Restart the state machine
_event=0;
}
else // Single channel AND single SF
{
_state = S_RX;
rxLoraModem();
_event=0;
}
writeRegister(REG_IRQ_FLAGS_MASK, (uint8_t) 0x00);
writeRegister(REG_IRQ_FLAGS, (uint8_t) 0xFF); // Reset all interrupts
eventTime=micros(); // Reset event for unkonwn state
break;// default
}// switch(_state)
return;
}