ESP-1ch-Gateway-v5.0--OLD/ESP-sc-gway/_sensor.ino

672 wiersze
20 KiB
C++

// sensor.ino; 1-channel LoRa Gateway for ESP8266
// Copyright (c) 2016, 2017, 2018 Maarten Westenberg
// Verison 5.3.2
// Date: 2018-07-07
//
// All rights reserved. This program and the accompanying materials
// are made available under the terms of the MIT License
// which accompanies this distribution, and is available at
// https://opensource.org/licenses/mit-license.php
//
// NO WARRANTY OF ANY KIND IS PROVIDED
//
// Author: Maarten Westenberg (mw12554@hotmail.com)
//
// This file contains code for using the single channel gateway also as a sensor node.
// Please specify the DevAddr and the AppSKey below (and on your LoRa backend).
// Also you will have to choose what sensors to forward to your application.
//
// Note: disable sensors not used in ESP-sc-gway.h
// - The GPS is included on TTGO T-Beam ESP32 boards by default.
// - The battery sensor works by connecting the VCC pin to A0 analog port
// ============================================================================
#if GATEWAYNODE==1
//#include "sensor.h" // Contains definitions for the sensor and TRUSTED info, ilcuded in ESP-sc-gway.ino
#include "LoRaCode.h"
unsigned char DevAddr[4] = _DEVADDR ; // see ESP-sc-gway.h
// Only used by GPS sensor code
#if _GPS==1
// ----------------------------------------------------------------------------
// Smartdelay is a function to delay processing but in the loop get info
// from the GPS device
// ----------------------------------------------------------------------------
static void smartDelay(unsigned long ms)
{
unsigned long start = millis();
do
{
while (Serial1.available())
gps.encode(Serial1.read());
} while (millis() - start < ms);
}
#endif //_GPS
// ----------------------------------------------------------------------------
// LoRaSensors() is a function that puts sensor values in the MACPayload and
// sends these values up to the server. For the server it is impossible to know
// whther or not the message comes from a LoRa node or from the gateway.
//
// The example code below adds a battery value in lCode (encoding protocol) but
// of-course you can add any byte string you wish
//
// Parameters:
// - buf: contains the buffer to put the sensor values in (max==xx);
// Returns:
// - The amount of sensor characters put in the buffer
//
// NOTE: The code in LoRaSensors() is provided as an example only.
// The amount of sensor values as well as their message layout may differ
// for each implementation.
// Also, the message format used by this gateway is LoraCode, a message format
// developed by me for sensor values. Each value is uniquely coded with an
// id and a value, and the total message contains its length (less than 64 bytes)
// and a parity value in byte[0] bit 7.
// ----------------------------------------------------------------------------
static int LoRaSensors(uint8_t *buf) {
uint8_t tchars = 1;
buf[0] = 0x86; // 134; User code <lCode + len==3 + Parity
#if DUSB>=1
if (debug>=0)
Serial.print(F("LoRaSensors:: "));
#endif
#if _BATTERY==1
#if DUSB>=1
if (debug>=0)
Serial.print(F("Battery "));
#endif
#if defined(ARDUINO_ARCH_ESP8266) || defined(ESP32)
// For ESP there is no standard battery library
// What we do is to measure GPIO35 pin which has a 100K voltage divider
pinMode(35, INPUT);
#if defined(ESP32)
int devider=4095;
#else
int devider=1023;
#endif //ESP32
float volts=3.3 * analogRead(35) / 4095 * 2; // T_Beam connects to GPIO35
#else
// For ESP8266 no sensor defined
float volts=0;
#endif
tchars += lcode.eBattery(volts, buf + tchars);
#endif
#if _GPS==1
#if DUSB>=1
if (debug>=0)
Serial.print(F("GPS "));
if (( debug>=1 ) && ( pdebug & P_MAIN )) {
Serial.print("\tLatitude : ");
Serial.println(gps.location.lat(), 5);
Serial.print("\tLongitude : ");
Serial.println(gps.location.lng(), 4);
Serial.print("\tSatellites: ");
Serial.println(gps.satellites.value());
Serial.print("\tAltitude : ");
Serial.print(gps.altitude.feet() / 3.2808);
Serial.println("M");
Serial.print("\tTime : ");
Serial.print(gps.time.hour());
Serial.print(":");
Serial.print(gps.time.minute());
Serial.print(":");
Serial.println(gps.time.second());
}
#endif
smartDelay(1000);
if (millis() > 5000 && gps.charsProcessed() < 10) {
#if DUSB>=1
Serial.println(F("No GPS data received: check wiring"));
#endif
return(0);
}
// Assuming we have a value, put it in the buf
// The layout of this message is specific to the user,
// so adapt as needed.
tchars += lcode.eGpsL(gps.location.lat(), gps.location.lng(), gps.altitude.value(),
gps.satellites.value(), buf + tchars);
#endif
#if DUSB>=1
if (debug>=0)
Serial.println();
#endif
// If all sensor data is encoded, we encode the buffer
lcode.eMsg(buf, tchars); // Fill byte 0 with bytecount and Parity
return(tchars); // return the number of bytes added to payload
}
// ----------------------------------------------------------------------------
// XOR()
// perform x-or function for buffer and key
// Since we do this ONLY for keys and X, Y we know that we need to XOR 16 bytes.
//
// ----------------------------------------------------------------------------
static void mXor(uint8_t *buf, uint8_t *key) {
for (uint8_t i = 0; i < 16; ++i) buf[i] ^= key[i];
}
// ----------------------------------------------------------------------------
// SHIFT-LEFT
// Shift the buffer buf left one bit
// Parameters:
// - buf: An array of uint8_t bytes
// - len: Length of the array in bytes
// ----------------------------------------------------------------------------
static void shift_left(uint8_t * buf, uint8_t len) {
while (len--) {
uint8_t next = len ? buf[1] : 0; // len 0 to 15
uint8_t val = (*buf << 1);
if (next & 0x80) val |= 0x01;
*buf++ = val;
}
}
// ----------------------------------------------------------------------------
// generate_subkey
// RFC 4493, para 2.3
// ----------------------------------------------------------------------------
static void generate_subkey(uint8_t *key, uint8_t *k1, uint8_t *k2) {
memset(k1, 0, 16); // Fill subkey1 with 0x00
// Step 1: Assume k1 is an all zero block
AES_Encrypt(k1,key);
// Step 2: Analyse outcome of Encrypt operation (in k1), generate k1
if (k1[0] & 0x80) {
shift_left(k1,16);
k1[15] ^= 0x87;
}
else {
shift_left(k1,16);
}
// Step 3: Generate k2
for (uint8_t i=0; i<16; i++) k2[i]=k1[i];
if (k1[0] & 0x80) { // use k1(==k2) according rfc
shift_left(k2,16);
k2[15] ^= 0x87;
}
else {
shift_left(k2,16);
}
// step 4: Done, return k1 and k2
return;
}
// ----------------------------------------------------------------------------
// ENCODEPACKET
// In Sensor mode, we have to encode the user payload before sending.
// The library files for AES are added to the library directory in AES.
// For the moment we use the AES library made by ideetron as this library
// is also used in the LMIC stack and is small in size.
//
// The function below follows the LoRa spec exactly.
//
// The resulting mumber of Bytes is returned by the functions. This means
// 16 bytes per block, and as we add to the last block we also return 16
// bytes for the last block.
//
// The LMIC code does not do this, so maybe we shorten the last block to only
// the meaningful bytes in the last block. This means that encoded buffer
// is exactly as big as the original message.
//
// NOTE:: Be aware that the LICENSE of the used AES library files
// that we call with AES_Encrypt() is GPL3. It is used as-is,
// but not part of this code.
//
// cmac = aes128_encrypt(K, Block_A[i])
// ----------------------------------------------------------------------------
uint8_t encodePacket(uint8_t *Data, uint8_t DataLength, uint16_t FrameCount, uint8_t *DevAddr, uint8_t *AppSKey, uint8_t Direction) {
#if DUSB>=1
if (debug>=2) {
Serial.print(F("encodePacket:: DevAddr="));
for (int i=0; i<4; i++ ) { Serial.print(DevAddr[i],HEX); Serial.print(' '); }
Serial.print(F("encodePacket:: AppSKey="));
for (int i=0; i<16; i++ ) { Serial.print(AppSKey[i],HEX); Serial.print(' '); }
Serial.println();
}
#endif
//unsigned char AppSKey[16] = _APPSKEY ; // see ESP-sc-gway.h
uint8_t i, j;
uint8_t Block_A[16];
uint8_t bLen=16; // Block length is 16 except for last block in message
uint8_t restLength = DataLength % 16; // We work in blocks of 16 bytes, this is the rest
uint8_t numBlocks = DataLength / 16; // Number of whole blocks to encrypt
if (restLength>0) numBlocks++; // And add block for the rest if any
for(i = 1; i <= numBlocks; i++) {
Block_A[0] = 0x01;
Block_A[1] = 0x00;
Block_A[2] = 0x00;
Block_A[3] = 0x00;
Block_A[4] = 0x00;
Block_A[5] = Direction; // 0 is uplink
Block_A[6] = DevAddr[3]; // Only works for and with ABP
Block_A[7] = DevAddr[2];
Block_A[8] = DevAddr[1];
Block_A[9] = DevAddr[0];
Block_A[10] = (FrameCount & 0x00FF);
Block_A[11] = ((FrameCount >> 8) & 0x00FF);
Block_A[12] = 0x00; // Frame counter upper Bytes
Block_A[13] = 0x00; // These are not used so are 0
Block_A[14] = 0x00;
Block_A[15] = i;
// Encrypt and calculate the S
AES_Encrypt(Block_A, AppSKey);
// Last block? set bLen to rest
if ((i == numBlocks) && (restLength>0)) bLen = restLength;
for(j = 0; j < bLen; j++) {
*Data = *Data ^ Block_A[j];
Data++;
}
}
//return(numBlocks*16); // Do we really want to return all 16 bytes in lastblock
return(DataLength); // or only 16*(numBlocks-1)+bLen;
}
// ----------------------------------------------------------------------------
// MICPACKET()
// Provide a valid MIC 4-byte code (par 2.4 of spec, RFC4493)
// see also https://tools.ietf.org/html/rfc4493
//
// Although our own handler may choose not to interpret the last 4 (MIC) bytes
// of a PHYSPAYLOAD physical payload message of in internal sensor,
// The official TTN (and other) backends will intrpret the complete message and
// conclude that the generated message is bogus.
// So we sill really simulate internal messages coming from the -1ch gateway
// to come from a real sensor and append 4 MIC bytes to every message that are
// perfectly legimate
// Parameters:
// - data: uint8_t array of bytes = ( MHDR | FHDR | FPort | FRMPayload )
// - len: 8=bit length of data, normally less than 64 bytes
// - FrameCount: 16-bit framecounter
// - dir: 0=up, 1=down
//
// B0 = ( 0x49 | 4 x 0x00 | Dir | 4 x DevAddr | 4 x FCnt | 0x00 | len )
// MIC is cmac [0:3] of ( aes128_cmac(NwkSKey, B0 | Data )
//
// ----------------------------------------------------------------------------
uint8_t micPacket(uint8_t *data, uint8_t len, uint16_t FrameCount, uint8_t * NwkSKey, uint8_t dir) {
//uint8_t NwkSKey[16] = _NWKSKEY;
uint8_t Block_B[16];
uint8_t X[16];
uint8_t Y[16];
// ------------------------------------
// build the B block used by the MIC process
Block_B[0]= 0x49; // 1 byte MIC code
Block_B[1]= 0x00; // 4 byte 0x00
Block_B[2]= 0x00;
Block_B[3]= 0x00;
Block_B[4]= 0x00;
Block_B[5]= dir; // 1 byte Direction
Block_B[6]= DevAddr[3]; // 4 byte DevAddr
Block_B[7]= DevAddr[2];
Block_B[8]= DevAddr[1];
Block_B[9]= DevAddr[0];
Block_B[10]= (FrameCount & 0x00FF); // 4 byte FCNT
Block_B[11]= ((FrameCount >> 8) & 0x00FF);
Block_B[12]= 0x00; // Frame counter upper Bytes
Block_B[13]= 0x00; // These are not used so are 0
Block_B[14]= 0x00; // 1 byte 0x00
Block_B[15]= len; // 1 byte len
// ------------------------------------
// Step 1: Generate the subkeys
//
uint8_t k1[16];
uint8_t k2[16];
generate_subkey(NwkSKey, k1, k2);
// ------------------------------------
// Copy the data to a new buffer which is prepended with Block B0
//
uint8_t micBuf[len+16]; // B0 | data
for (uint8_t i=0; i<16; i++) micBuf[i]=Block_B[i];
for (uint8_t i=0; i<len; i++) micBuf[i+16]=data[i];
// ------------------------------------
// Step 2: Calculate the number of blocks for CMAC
//
uint8_t numBlocks = len/16 + 1; // Compensate for B0 block
if ((len % 16)!=0) numBlocks++; // If we have only a part block, take it all
// ------------------------------------
// Step 3: Calculate padding is necessary
//
uint8_t restBits = len%16; // if numBlocks is not a multiple of 16 bytes
// ------------------------------------
// Step 5: Make a buffer of zeros
//
memset(X, 0, 16);
// ------------------------------------
// Step 6: Do the actual encoding according to RFC
//
for(uint8_t i= 0x0; i < (numBlocks - 1); i++) {
for (uint8_t j=0; j<16; j++) Y[j] = micBuf[(i*16)+j];
mXor(Y, X);
AES_Encrypt(Y, NwkSKey);
for (uint8_t j=0; j<16; j++) X[j] = Y[j];
}
// ------------------------------------
// Step 4: If there is a rest Block, padd it
// Last block. We move step 4 to the end as we need Y
// to compute the last block
//
if (restBits) {
for (uint8_t i=0; i<16; i++) {
if (i< restBits) Y[i] = micBuf[((numBlocks-1)*16)+i];
if (i==restBits) Y[i] = 0x80;
if (i> restBits) Y[i] = 0x00;
}
mXor(Y, k2);
}
else {
for (uint8_t i=0; i<16; i++) {
Y[i] = micBuf[((numBlocks-1)*16)+i];
}
mXor(Y, k1);
}
mXor(Y, X);
AES_Encrypt(Y,NwkSKey);
// ------------------------------------
// Step 7: done, return the MIC size.
// Only 4 bytes are returned (32 bits), which is less than the RFC recommends.
// We return by appending 4 bytes to data, so there must be space in data array.
//
data[len+0]=Y[0];
data[len+1]=Y[1];
data[len+2]=Y[2];
data[len+3]=Y[3];
return 4;
}
#if _CHECK_MIC==1
// ----------------------------------------------------------------------------
// CHECKMIC
// Function to check the MIC computed for existing messages and for new messages
// Parameters:
// - buf: LoRa buffer to check in bytes, last 4 bytes contain the MIC
// - len: Length of buffer in bytes
// - key: Key to use for MIC. Normally this is the NwkSKey
//
// ----------------------------------------------------------------------------
static void checkMic(uint8_t *buf, uint8_t len, uint8_t *key) {
uint8_t cBuf[len+1];
uint8_t NwkSKey[16] = _NWKSKEY;
if (debug>=2) {
Serial.print(F("old="));
for (uint8_t i=0; i<len; i++) {
printHexDigit(buf[i]);
Serial.print(' ');
}
Serial.println();
}
for (uint8_t i=0; i<len-4; i++) cBuf[i] = buf[i];
len -=4;
uint16_t FrameCount = ( cBuf[7] * 256 ) + cBuf[6];
len += micPacket(cBuf, len, FrameCount, NwkSKey, 0);
if (debug>=2) {
Serial.print(F("new="));
for (uint8_t i=0; i<len; i++) {
printHexDigit(cBuf[i]);
Serial.print(' ');
}
Serial.println();
}
// Mic is only checked, but len is not corrected
}
#endif //_CHECK_MIC
// ----------------------------------------------------------------------------
// SENSORPACKET
// The gateway may also have local sensors that need reporting.
// We will generate a message in gateway-UDP format for upStream messaging
// so that for the backend server it seems like a LoRa node has reported a
// sensor value.
//
// NOTE: We do not need ANY LoRa functions here since we are on the gateway.
// We only need to send a gateway message upstream that looks like a node message.
//
// NOTE:: This function does encrypt the sensorpayload, and the backend
// picks it up fine as decoder thinks it is a MAC message.
//
// Par 4.0 LoraWan spec:
// PHYPayload = ( MHDR | MACPAYLOAD | MIC )
// which is equal to
// ( MHDR | ( FHDR | FPORT | FRMPAYLOAD ) | MIC )
//
// This function makes the totalpackage and calculates MIC
// The maximum size of the message is: 12 + ( 9 + 2 + 64 ) + 4
// So message size should be lass than 128 bytes if Payload is limited to 64 bytes.
//
// return value:
// - On success returns the number of bytes to send
// - On error returns -1
// ----------------------------------------------------------------------------
int sensorPacket() {
uint8_t buff_up[512]; // Declare buffer here to avoid exceptions
uint8_t message[64]={ 0 }; // Payload, init to 0
uint8_t mlength = 0;
uint32_t tmst = micros();
struct LoraUp LUP;
uint8_t NwkSKey[16] = _NWKSKEY;
uint8_t AppSKey[16] = _APPSKEY;
uint8_t DevAddr[4] = _DEVADDR;
// Init the other LoraUp fields
LUP.sf = 8; // Send with SF8
LUP.prssi = -50;
LUP.rssicorr = 139;
LUP.snr = 0;
// In the next few bytes the fake LoRa message must be put
// PHYPayload = MHDR | MACPAYLOAD | MIC
// MHDR, 1 byte
// MIC, 4 bytes
// ------------------------------
// MHDR (Para 4.2), bit 5-7 MType, bit 2-4 RFU, bit 0-1 Major
LUP.payLoad[0] = 0x40; // MHDR 0x40 == unconfirmed up message,
// FRU and major are 0
// -------------------------------
// FHDR consists of 4 bytes addr, 1 byte Fctrl, 2 byte FCnt, 0-15 byte FOpts
// We support ABP addresses only for Gateways
LUP.payLoad[1] = DevAddr[3]; // Last byte[3] of address
LUP.payLoad[2] = DevAddr[2];
LUP.payLoad[3] = DevAddr[1];
LUP.payLoad[4] = DevAddr[0]; // First byte[0] of Dev_Addr
LUP.payLoad[5] = 0x00; // FCtrl is normally 0
LUP.payLoad[6] = frameCount % 0x100; // LSB
LUP.payLoad[7] = frameCount / 0x100; // MSB
// -------------------------------
// FPort, either 0 or 1 bytes. Must be != 0 for non MAC messages such as user payload
//
LUP.payLoad[8] = 0x01; // FPort must not be 0
LUP.payLength = 9;
// FRMPayload; Payload will be AES128 encoded using AppSKey
// See LoRa spec para 4.3.2
// You can add any byte string below based on you personal choice of sensors etc.
//
// Payload bytes in this example are encoded in the LoRaCode(c) format
uint8_t PayLength = LoRaSensors((uint8_t *)(LUP.payLoad + LUP.payLength));
#if DUSB>=1
if ((debug>=2) && (pdebug & P_RADIO )) {
Serial.print(F("old: "));
for (int i=0; i<PayLength; i++) {
Serial.print(LUP.payLoad[i],HEX);
Serial.print(' ');
}
Serial.println();
}
#endif
// we have to include the AES functions at this stage in order to generate LoRa Payload.
uint8_t CodeLength = encodePacket((uint8_t *)(LUP.payLoad + LUP.payLength), PayLength, (uint16_t)frameCount, DevAddr, AppSKey, 0);
#if DUSB>=1
if ((debug>=2) && (pdebug & P_RADIO )) {
Serial.print(F("new: "));
for (int i=0; i<CodeLength; i++) {
Serial.print(LUP.payLoad[i],HEX);
Serial.print(' ');
}
Serial.println();
}
#endif
LUP.payLength += CodeLength; // length inclusive sensor data
// MIC, Message Integrity Code
// As MIC is used by TTN (and others) we have to make sure that
// framecount is valid and the message is correctly encrypted.
// Note: Until MIC is done correctly, TTN does not receive these messages
// The last 4 bytes are MIC bytes.
//
LUP.payLength += micPacket((uint8_t *)(LUP.payLoad), LUP.payLength, (uint16_t)frameCount, NwkSKey, 0);
#if DUSB>=1
if ((debug>=2) && (pdebug & P_RADIO )) {
Serial.print(F("mic: "));
for (int i=0; i<LUP.payLength; i++) {
Serial.print(LUP.payLoad[i],HEX);
Serial.print(' ');
}
Serial.println();
}
#endif
// So now our package is ready, and we can send it up through the gateway interface
// Note Be aware that the sensor message (which is bytes) in message will be
// be expanded if the server expects JSON messages.
//
int buff_index = buildPacket(tmst, buff_up, LUP, true);
frameCount++;
cp_nb_rx_rcv++;
// In order to save the memory, we only write the framecounter
// to EEPROM every 10 values. It also means that we will invalidate
// 10 value when restarting the gateway.
//
if (( frameCount % 10)==0) writeGwayCfg(CONFIGFILE);
if (buff_index > 512) {
if (debug>0) Serial.println(F("sensorPacket:: ERROR buffer size too large"));
return(-1);
}
#ifdef _TTNSERVER
if (!sendUdp(ttnServer, _TTNPORT, buff_up, buff_index)) {
return(-1);
}
#endif
#ifdef _THINGSERVER
if (!sendUdp(thingServer, _THINGPORT, buff_up, buff_index)) {
return(-1);
}
#endif
#if DUSB>=1
// If all is right, we should after decoding (which is the same as encoding) get
// the original message back again.
if ((debug>=2) && (pdebug & P_RADIO )) {
CodeLength = encodePacket((uint8_t *)(LUP.payLoad + 9), PayLength, (uint16_t)frameCount-1, DevAddr, AppSKey, 0);
Serial.print(F("rev: "));
for (int i=0; i<CodeLength; i++) {
Serial.print(LUP.payLoad[i],HEX);
Serial.print(' ');
}
Serial.print(F(", addr="));
for (int i=0; i<4; i++) {
Serial.print(DevAddr[i],HEX);
Serial.print(' ');
}
Serial.println();
}
#endif
if (_cad) {
// Set the state to CAD scanning after sending a packet
_state = S_SCAN; // Inititialise scanner
sf = SF7;
cadScanner();
}
else {
// Reset all RX lora stuff
_state = S_RX;
rxLoraModem();
}
return(buff_index);
}
#endif //GATEWAYNODE==1