ESP-1ch-Gateway-v5.0--OLD/ESP-sc-gway/_txRx.ino

714 wiersze
23 KiB
C++

// 1-channel LoRa Gateway for ESP8266
// Copyright (c) 2016, 2017, 2018 Maarten Westenberg version for ESP8266
// Version 5.3.3
// Date: 2018-08-25
//
// based on work done by Thomas Telkamp for Raspberry PI 1ch gateway
// and many others.
//
// All rights reserved. This program and the accompanying materials
// are made available under the terms of the MIT License
// which accompanies this distribution, and is available at
// https://opensource.org/licenses/mit-license.php
//
// NO WARRANTY OF ANY KIND IS PROVIDED
//
// Author: Maarten Westenberg (mw12554@hotmail.com)
//
// This file contains the LoRa modem specific code enabling to receive
// and transmit packages/messages.
// ========================================================================================
// ----------------------------------------------------------------------------
// DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN
// Send DOWN a LoRa packet over the air to the node. This function does all the
// decoding of the server message and prepares a Payload buffer.
// The payload is actually transmitted by the sendPkt() function.
// This function is used for regular downstream messages and for JOIN_ACCEPT
// messages.
// NOTE: This is not an interrupt function, but is started by loop().
// The _status is set an the end of the function to TX and in _stateMachine
// function the actual transmission function is executed.
// The LoraDown.tmst contains the timestamp that the tranmission should finish.
// ----------------------------------------------------------------------------
int sendPacket(uint8_t *buf, uint8_t length)
{
// Received package with Meta Data (for example):
// codr : "4/5"
// data : "Kuc5CSwJ7/a5JgPHrP29X9K6kf/Vs5kU6g==" // for example
// freq : 868.1 // 868100000
// ipol : true/false
// modu : "LORA"
// powe : 14 // Set by default
// rfch : 0 // Set by default
// size : 21
// tmst : 1800642 // for example
// datr : "SF7BW125"
// 12-byte header;
// HDR (1 byte)
//
//
// Data Reply for JOIN_ACCEPT as sent by server:
// AppNonce (3 byte)
// NetID (3 byte)
// DevAddr (4 byte) [ 31..25]:NwkID , [24..0]:NwkAddr
// DLSettings (1 byte)
// RxDelay (1 byte)
// CFList (fill to 16 bytes)
int i=0;
StaticJsonDocument<312> jsonBuffer;
char * bufPtr = (char *) (buf);
buf[length] = 0;
#if DUSB>=1
if (debug>=2) {
Serial.println((char *)buf);
Serial.print(F("<"));
Serial.flush();
}
#endif
// Use JSON to decode the string after the first 4 bytes.
// The data for the node is in the "data" field. This function destroys original buffer
auto error = deserializeJson(jsonBuffer, bufPtr);
if (error) {
#if DUSB>=1
if (( debug>=1) && (pdebug & P_TX)) {
Serial.print (F("T sendPacket:: ERROR Json Decode"));
if (debug>=2) {
Serial.print(':');
Serial.println(bufPtr);
}
Serial.flush();
}
#endif
return(-1);
}
yield();
// Meta Data sent by server (example)
// {"txpk":{"codr":"4/5","data":"YCkEAgIABQABGmIwYX/kSn4Y","freq":868.1,"ipol":true,"modu":"LORA","powe":14,"rfch":0,"size":18,"tmst":1890991792,"datr":"SF7BW125"}}
// Used in the protocol of Gateway:
JsonObject root = jsonBuffer.to<JsonObject>();
const char * data = root["txpk"]["data"]; // Downstream Payload
uint8_t psize = root["txpk"]["size"];
bool ipol = root["txpk"]["ipol"];
uint8_t powe = root["txpk"]["powe"]; // e.g. 14 or 27
LoraDown.tmst = (uint32_t) root["txpk"]["tmst"].as<unsigned long>();
const float ff = root["txpk"]["freq"]; // eg 869.525
// Not used in the protocol of Gateway TTN:
const char * datr = root["txpk"]["datr"]; // eg "SF7BW125"
const char * modu = root["txpk"]["modu"]; // =="LORA"
const char * codr = root["txpk"]["codr"]; // e.g. "4/5"
//if (root["txpk"].containsKey("imme") ) {
// const bool imme = root["txpk"]["imme"]; // Immediate Transmit (tmst don't care)
//}
if ( data != NULL ) {
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_TX )) {
Serial.print(F("T data: "));
Serial.println((char *) data);
if (debug>=2) Serial.flush();
}
#endif
}
else { // There is data!
#if DUSB>=1
if ((debug>0) && ( pdebug & P_TX )) {
Serial.println(F("T sendPacket:: ERROR: data is NULL"));
if (debug>=2) Serial.flush();
}
#endif
return(-1);
}
LoraDown.sfTx = atoi(datr+2); // Convert "SF9BW125" or what is received from gateway to number
LoraDown.iiq = (ipol? 0x40: 0x27); // if ipol==true 0x40 else 0x27
LoraDown.crc = 0x00; // switch CRC off for TX
LoraDown.payLength = base64_dec_len((char *) data, strlen(data));// Length of the Payload data
base64_decode((char *) payLoad, (char *) data, strlen(data)); // Fill payload w decoded message
// Compute wait time in microseconds
uint32_t w = (uint32_t) (LoraDown.tmst - micros()); // Wait Time compute
// _STRICT_1CH determines ho we will react on downstream messages.
// If STRICT==0, we will receive messags from the TTN gateway presumably on SF12/869.5MHz
// And since the Gateway is a single channel gateway, and its nodes are probably
// single channle too. They will not listen to that frequency.
// When STRICT==1, we will answer (in the RX1 timeslot) on the frequency we receive on.
//
#if _STRICT_1CH == 1
// If possible use RX1 timeslot as this is our frequency.
// Do not use RX2 or JOIN2 as they contain other frequencies
if ((w>1000000) && (w<3000000)) {
LoraDown.tmst-=1000000;
} // Is tmst correction necessary
else if ((w>6000000) && (w<7000000)) {
LoraDown.tmst-=500000;
}
LoraDown.powe = 14; // On all freqs except 869.5MHz power is limited
//LoraDown.sfTx = sfi; // Take care, TX sf not to be mixed with SCAN
LoraDown.fff = freq; // Use the current frequency
#else
LoraDown.powe = powe;
// convert double frequency (MHz) into uint32_t frequency in Hz.
LoraDown.fff = (uint32_t) ((uint32_t)((ff+0.000035)*1000)) * 1000;
#endif
LoraDown.payLoad = payLoad;
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_TX)) {
Serial.print(F("T LoraDown tmst="));
Serial.print(LoraDown.tmst);
//Serial.print(F(", w="));
//Serial.print(w);
if ( debug>=2 ) {
Serial.print(F(" Request:: "));
Serial.print(F(" tmst=")); Serial.print(LoraDown.tmst); Serial.print(F(" wait=")); Serial.println(w);
Serial.print(F(" strict=")); Serial.print(_STRICT_1CH);
Serial.print(F(" datr=")); Serial.println(datr);
Serial.print(F(" Rfreq=")); Serial.print(freq); Serial.print(F(", Request=")); Serial.print(freq); Serial.print(F(" ->")); Serial.println(LoraDown.fff);
Serial.print(F(" sf =")); Serial.print(atoi(datr+2)); Serial.print(F(" ->")); Serial.println(LoraDown.sfTx);
Serial.print(F(" modu=")); Serial.println(modu);
Serial.print(F(" powe=")); Serial.println(powe);
Serial.print(F(" codr=")); Serial.println(codr);
Serial.print(F(" ipol=")); Serial.println(ipol);
}
Serial.println();
}
#endif
if (LoraDown.payLength != psize) {
#if DUSB>=1
Serial.print(F("sendPacket:: WARNING payLength: "));
Serial.print(LoraDown.payLength);
Serial.print(F(", psize="));
Serial.println(psize);
if (debug>=2) Serial.flush();
#endif
}
#if DUSB>=1
else if (( debug >= 2 ) && ( pdebug & P_TX )) {
Serial.print(F("T Payload="));
for (i=0; i<LoraDown.payLength; i++) {
Serial.print(payLoad[i],HEX);
Serial.print(':');
}
Serial.println();
if (debug>=2) Serial.flush();
}
#endif
cp_up_pkt_fwd++;
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_TX )) {
Serial.println(F("T sendPacket:: fini OK"));
}
#endif // DUSB
// All data is in Payload and parameters and need to be transmitted.
// The function is called in user-space
_state = S_TX; // _state set to transmit
return 1;
}//sendPacket
// ----------------------------------------------------------------------------
// UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP
// Based on the information read from the LoRa transceiver (or fake message)
// build a gateway message to send upstream (to the user somewhere on the web).
//
// parameters:
// tmst: Timestamp to include in the upstream message
// buff_up: The buffer that is generated for upstream
// message: The payload message to include in the the buff_up
// messageLength: The number of bytes received by the LoRa transceiver
// internal: Boolean value to indicate whether the local sensor is processed
//
// returns:
// buff_index
// ----------------------------------------------------------------------------
int buildPacket(uint32_t tmst, uint8_t *buff_up, struct LoraUp LoraUp, bool internal)
{
long SNR;
int rssicorr;
int prssi; // packet rssi
char cfreq[12] = {0}; // Character array to hold freq in MHz
//lastTmst = tmst; // Following/according to spec
int buff_index=0;
char b64[256];
uint8_t *message = LoraUp.payLoad;
char messageLength = LoraUp.payLength;
#if _CHECK_MIC==1
unsigned char NwkSKey[16] = _NWKSKEY;
checkMic(message, messageLength, NwkSKey);
#endif // _CHECK_MIC
// Read SNR and RSSI from the register. Note: Not for internal sensors!
// For internal sensor we fake these values as we cannot read a register
if (internal) {
SNR = 12;
prssi = 50;
rssicorr = 157;
}
else {
SNR = LoraUp.snr;
prssi = LoraUp.prssi; // read register 0x1A, packet rssi
rssicorr = LoraUp.rssicorr;
}
#if STATISTICS >= 1
// Receive statistics, move old statistics down 1 position
// and fill the new top line with the latest received sensor values.
// This works fine for the sensor, EXCEPT when we decode data for _LOCALSERVER
//
for (int m=( MAX_STAT -1); m>0; m--) statr[m]=statr[m-1];
// From now on we can fill start[0] with sensor data
#if _LOCALSERVER==1
statr[0].datal=0;
int index;
if ((index = inDecodes((char *)(LoraUp.payLoad+1))) >=0 ) {
uint16_t frameCount=LoraUp.payLoad[7]*256 + LoraUp.payLoad[6];
for (int k=0; (k<LoraUp.payLength) && (k<23); k++) {
statr[0].data[k] = LoraUp.payLoad[k+9];
};
// XXX Check that k<23 when leaving the for loop
// XXX or we can not display in statr
uint8_t DevAddr[4];
DevAddr[0]= LoraUp.payLoad[4];
DevAddr[1]= LoraUp.payLoad[3];
DevAddr[2]= LoraUp.payLoad[2];
DevAddr[3]= LoraUp.payLoad[1];
statr[0].datal = encodePacket((uint8_t *)(statr[0].data),
LoraUp.payLength-9-4,
(uint16_t)frameCount,
DevAddr,
decodes[index].appKey,
0);
}
#endif //_LOCALSERVER
statr[0].tmst = now();
statr[0].ch= ifreq;
statr[0].prssi = prssi - rssicorr;
#if RSSI==1
statr[0].rssi = _rssi - rssicorr;
#endif // RSII
statr[0].sf = LoraUp.sf;
#if DUSB>=2
if (debug>=0) {
if ((message[4] != 0x26) || (message[1]==0x99)) {
Serial.print(F("addr="));
for (int i=messageLength; i>0; i--) {
if (message[i]<0x10) Serial.print('0');
Serial.print(message[i],HEX);
Serial.print(' ');
}
Serial.println();
}
}
#endif //DUSB
statr[0].node = ( message[1]<<24 | message[2]<<16 | message[3]<<8 | message[4] );
#if STATISTICS >= 2
// Fill in the statistics that we will also need for the GUI.
// So
switch (statr[0].sf) {
case SF7: statc.sf7++; break;
case SF8: statc.sf8++; break;
case SF9: statc.sf9++; break;
case SF10: statc.sf10++; break;
case SF11: statc.sf11++; break;
case SF12: statc.sf12++; break;
}
#endif //STATISTICS >= 2
#if STATISTICS >= 3
if (statr[0].ch == 0) switch (statr[0].sf) {
case SF7: statc.sf7_0++; break;
case SF8: statc.sf8_0++; break;
case SF9: statc.sf9_0++; break;
case SF10: statc.sf10_0++; break;
case SF11: statc.sf11_0++; break;
case SF12: statc.sf12_0++; break;
}
else
if (statr[0].ch == 1) switch (statr[0].sf) {
case SF7: statc.sf7_1++; break;
case SF8: statc.sf8_1++; break;
case SF9: statc.sf9_1++; break;
case SF10: statc.sf10_1++; break;
case SF11: statc.sf11_1++; break;
case SF12: statc.sf12_1++; break;
}
else
if (statr[0].ch == 2) switch (statr[0].sf) {
case SF7: statc.sf7_2++; break;
case SF8: statc.sf8_2++; break;
case SF9: statc.sf9_2++; break;
case SF10: statc.sf10_2++; break;
case SF11: statc.sf11_2++; break;
case SF12: statc.sf12_2++; break;
}
#endif //STATISTICS >= 3
#endif //STATISTICS >= 2
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_RADIO )){
Serial.print(F("R buildPacket:: pRSSI="));
Serial.print(prssi-rssicorr);
Serial.print(F(" RSSI: "));
Serial.print(_rssi - rssicorr);
Serial.print(F(" SNR: "));
Serial.print(SNR);
Serial.print(F(" Length: "));
Serial.print((int)messageLength);
Serial.print(F(" -> "));
int i;
for (i=0; i< messageLength; i++) {
Serial.print(message[i],HEX);
Serial.print(' ');
}
Serial.println();
yield();
}
#endif // DUSB
// Show received message status on OLED display
#if OLED>=1
char timBuff[20];
sprintf(timBuff, "%02i:%02i:%02i", hour(), minute(), second());
display.clear();
display.setFont(ArialMT_Plain_16);
display.setTextAlignment(TEXT_ALIGN_LEFT);
// msg_oLED(timBuff, prssi-rssicorr, SNR, message)
display.drawString(0, 0, "Time: " );
display.drawString(40, 0, timBuff);
display.drawString(0, 16, "RSSI: " );
display.drawString(40, 16, String(prssi-rssicorr));
display.drawString(70, 16, ",SNR: " );
display.drawString(110, 16, String(SNR) );
display.drawString(0, 32, "Addr: " );
if (message[4] < 0x10) display.drawString( 40, 32, "0"+String(message[4], HEX)); else display.drawString( 40, 32, String(message[4], HEX));
if (message[3] < 0x10) display.drawString( 61, 32, "0"+String(message[3], HEX)); else display.drawString( 61, 32, String(message[3], HEX));
if (message[2] < 0x10) display.drawString( 82, 32, "0"+String(message[2], HEX)); else display.drawString( 82, 32, String(message[2], HEX));
if (message[1] < 0x10) display.drawString(103, 32, "0"+String(message[1], HEX)); else display.drawString(103, 32, String(message[1], HEX));
display.drawString(0, 48, "LEN: " );
display.drawString(40, 48, String((int)messageLength) );
display.display();
//yield();
#endif //OLED>=1
int j;
// XXX Base64 library is nopad. So we may have to add padding characters until
// message Length is multiple of 4!
// Encode message with messageLength into b64
int encodedLen = base64_enc_len(messageLength); // max 341
#if DUSB>=1
if ((debug>=1) && (encodedLen>255) && ( pdebug & P_RADIO )) {
Serial.print(F("R buildPacket:: b64 err, len="));
Serial.println(encodedLen);
if (debug>=2) Serial.flush();
return(-1);
}
#endif // DUSB
base64_encode(b64, (char *) message, messageLength);// max 341
// start composing datagram with the header
uint8_t token_h = (uint8_t)rand(); // random token
uint8_t token_l = (uint8_t)rand(); // random token
// pre-fill the data buffer with fixed fields
buff_up[0] = PROTOCOL_VERSION; // 0x01 still
buff_up[1] = token_h;
buff_up[2] = token_l;
buff_up[3] = PKT_PUSH_DATA; // 0x00
// READ MAC ADDRESS OF ESP8266, and insert 0xFF 0xFF in the middle
buff_up[4] = MAC_array[0];
buff_up[5] = MAC_array[1];
buff_up[6] = MAC_array[2];
buff_up[7] = 0xFF;
buff_up[8] = 0xFF;
buff_up[9] = MAC_array[3];
buff_up[10] = MAC_array[4];
buff_up[11] = MAC_array[5];
buff_index = 12; // 12-byte binary (!) header
// start of JSON structure that will make payload
memcpy((void *)(buff_up + buff_index), (void *)"{\"rxpk\":[", 9);
buff_index += 9;
buff_up[buff_index] = '{';
++buff_index;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, "\"tmst\":%u", tmst);
#if DUSB>=1
if ((j<0) && ( debug>=1 ) && ( pdebug & P_RADIO )) {
Serial.println(F("buildPacket:: Error "));
}
#endif
buff_index += j;
ftoa((double)freq/1000000,cfreq,6); // XXX This can be done better
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"chan\":%1u,\"rfch\":%1u,\"freq\":%s", 0, 0, cfreq);
buff_index += j;
memcpy((void *)(buff_up + buff_index), (void *)",\"stat\":1", 9);
buff_index += 9;
memcpy((void *)(buff_up + buff_index), (void *)",\"modu\":\"LORA\"", 14);
buff_index += 14;
/* Lora datarate & bandwidth, 16-19 useful chars */
switch (LoraUp.sf) {
case SF6:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF6", 12);
buff_index += 12;
break;
case SF7:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF7", 12);
buff_index += 12;
break;
case SF8:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF8", 12);
buff_index += 12;
break;
case SF9:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF9", 12);
buff_index += 12;
break;
case SF10:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF10", 13);
buff_index += 13;
break;
case SF11:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF11", 13);
buff_index += 13;
break;
case SF12:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF12", 13);
buff_index += 13;
break;
default:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF?", 12);
buff_index += 12;
}
memcpy((void *)(buff_up + buff_index), (void *)"BW125\"", 6);
buff_index += 6;
memcpy((void *)(buff_up + buff_index), (void *)",\"codr\":\"4/5\"", 13);
buff_index += 13;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"lsnr\":%li", SNR);
buff_index += j;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"rssi\":%d,\"size\":%u", prssi-rssicorr, messageLength);
buff_index += j;
memcpy((void *)(buff_up + buff_index), (void *)",\"data\":\"", 9);
buff_index += 9;
// Use gBase64 library to fill in the data string
encodedLen = base64_enc_len(messageLength); // max 341
j = base64_encode((char *)(buff_up + buff_index), (char *) message, messageLength);
buff_index += j;
buff_up[buff_index] = '"';
++buff_index;
// End of packet serialization
buff_up[buff_index] = '}';
++buff_index;
buff_up[buff_index] = ']';
++buff_index;
// end of JSON datagram payload */
buff_up[buff_index] = '}';
++buff_index;
buff_up[buff_index] = 0; // add string terminator, for safety
#if STAT_LOG == 1
// Do statistics logging. In first version we might only
// write part of the record to files, later more
addLog( (unsigned char *)(buff_up), buff_index );
#endif
#if DUSB>=1
if (( debug>=2 ) && ( pdebug & P_RX )) {
Serial.print(F("R RXPK:: "));
Serial.println((char *)(buff_up + 12)); // debug: display JSON payload
Serial.print(F("R RXPK:: package length="));
Serial.println(buff_index);
}
#endif
return(buff_index);
}// buildPacket
// ----------------------------------------------------------------------------
// UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP
// Receive a LoRa package over the air, LoRa and deliver to server(s)
//
// Receive a LoRa message and fill the buff_up char buffer.
// returns values:
// - returns the length of string returned in buff_up
// - returns -1 or -2 when no message arrived, depending connection.
//
// This is the "highlevel" function called by loop()
// ----------------------------------------------------------------------------
int receivePacket()
{
uint8_t buff_up[TX_BUFF_SIZE]; // buffer to compose the upstream packet to backend server
long SNR;
uint8_t message[128] = { 0x00 }; // MSG size is 128 bytes for rx
uint8_t messageLength = 0;
// Regular message received, see SX1276 spec table 18
// Next statement could also be a "while" to combine several messages received
// in one UDP message as the Semtech Gateway spec does allow this.
// XXX Not yet supported
// Take the timestamp as soon as possible, to have accurate reception timestamp
// TODO: tmst can jump if micros() overflow.
uint32_t tmst = (uint32_t) micros(); // Only microseconds, rollover in 5X minutes
//lastTmst = tmst; // Following/according to spec
// Handle the physical data read from LoraUp
if (LoraUp.payLength > 0) {
// externally received packet, so last parameter is false (==LoRa external)
int build_index = buildPacket(tmst, buff_up, LoraUp, false);
// REPEATER is a special function where we retransmit received
// message on _ICHANN to _OCHANN.
// Note:: For the moment _OCHANN is not allowed to be same as _ICHANN
#if REPEATER==1
if (!sendLora(LoraUp.payLoad, LoraUp.payLength)) {
return(-3);
}
#endif
// This is one of the potential problem areas.
// If possible, USB traffic should be left out of interrupt routines
// rxpk PUSH_DATA received from node is rxpk (*2, par. 3.2)
#ifdef _TTNSERVER
if (!sendUdp(ttnServer, _TTNPORT, buff_up, build_index)) {
return(-1); // received a message
}
yield();
#endif
// Use our own defined server or a second well kon server
#ifdef _THINGSERVER
if (!sendUdp(thingServer, _THINGPORT, buff_up, build_index)) {
return(-2); // received a message
}
#endif
#if _LOCALSERVER==1
// Or special case, we do not use a local server to receive
// and decode the server. We use buildPacket() to call decode
// and use statr[0] information to store decoded message
//DecodePayload: para 4.3.1 of Lora 1.1 Spec
// MHDR
// 1 byte Payload[0]
// FHDR
// 4 byte Dev Addr Payload[1-4]
// 1 byte FCtrl Payload[5]
// 2 bytes FCnt Payload[6-7]
// = Optional 0 to 15 bytes Options
// FPort
// 1 bytes, 0x00 Payload[8]
// ------------
// +=9 BYTES HEADER
//
// FRMPayload
// N bytes (Payload )
//
// 4 bytes MIC trailer
int index=0;
if ((index = inDecodes((char *)(LoraUp.payLoad+1))) >=0 ) {
uint8_t DevAddr[4];
DevAddr[0]= LoraUp.payLoad[4];
DevAddr[1]= LoraUp.payLoad[3];
DevAddr[2]= LoraUp.payLoad[2];
DevAddr[3]= LoraUp.payLoad[1];
uint16_t frameCount=LoraUp.payLoad[7]*256 + LoraUp.payLoad[6];
#if DUSB>=1
if (( debug>=1 ) && ( pdebug & P_RX )) {
Serial.print(F("R receivePacket:: Ind="));
Serial.print(index);
Serial.print(F(", Len="));
Serial.print(LoraUp.payLength);
Serial.print(F(", A="));
for (int i=0; i<4; i++) {
if (DevAddr[i]<0x0F) Serial.print('0');
Serial.print(DevAddr[i],HEX);
//Serial.print(' ');
}
Serial.print(F(", Msg="));
for (int i=0; (i<statr[0].datal) && (i<23); i++) {
if (statr[0].data[i]<0x0F) Serial.print('0');
Serial.print(statr[0].data[i],HEX);
Serial.print(' ');
}
Serial.println();
}
}
else if (( debug>=2 ) && ( pdebug & P_RX )) {
Serial.println(F("receivePacket:: No Index"));
}
#endif //DUSB
#endif // _LOCALSERVER
// Reset the message area
LoraUp.payLength = 0;
LoraUp.payLoad[0] = 0x00;
return(build_index);
}
return(0); // failure no message read
}//receivePacket