DiFipp/include/Butterworth.tpp

261 wiersze
7.8 KiB
C++

#include "BilinearTransform.h"
#include "polynome_functions.h"
namespace fratio {
template <typename T>
T Butterworth<T>::PI = static_cast<T>(M_PI);
template <typename T>
std::pair<int, T> Butterworth<T>::findMinimumButter(T wPass, T wStop, T APass, T AStop)
{
T num = std::log10((std::pow(T(10), T(0.1) * std::abs(AStop)) - 1) / (std::pow(T(10), T(0.1) * std::abs(APass)) - 1));
// pre-warp
T fwPass = std::tan(T(0.5) * PI * wPass);
T fwStop = std::tan(T(0.5) * PI * wStop);
T w;
if (wPass < wStop)
w = std::abs(fwStop / fwPass);
else
w = std::abs(fwPass / fwStop);
T denum = T(2) * std::log10(w);
int order = static_cast<int>(std::ceil(num / denum));
T ctf = w / std::pow(std::pow(T(10), T(0.1) * std::abs(AStop)) - 1, T(1) / T(2 * order));
if (wPass < wStop)
ctf *= fwPass;
else
ctf = fwPass / ctf;
return std::pair<int, T>(order, T(2) * std::atan(ctf) / PI);
}
template <typename T>
Butterworth<T>::Butterworth(Type type)
: m_type(type)
{
}
template <typename T>
Butterworth<T>::Butterworth(int order, T fc, T fs, Type type)
: m_type(type)
{
initialize(order, fc, 0, fs);
}
template <typename T>
Butterworth<T>::Butterworth(int order, T fLower, T fUpper, T fs, Type type)
: m_type(type)
{
initialize(order, fLower, fUpper, fs);
}
template <typename T>
void Butterworth<T>::setFilterParameters(int order, T fc, T fs)
{
initialize(order, fc, 0, fs);
}
template <typename T>
void Butterworth<T>::setFilterParameters(int order, T fLower, T fUpper, T fs)
{
initialize(order, fLower, fUpper, fs);
}
template <typename T>
void Butterworth<T>::initialize(int order, T f1, T f2, T fs)
{
// f1 = fc for LowPass/HighPass filter
// f1 = fLower, f2 = fUpper for BandPass/BandReject filter
if (order <= 0) {
m_status = FilterStatus::BAD_ORDER_SIZE;
return;
}
if (f1 <= 0 || fs <= 0) {
m_status = FilterStatus::BAD_FREQUENCY_VALUE;
return;
}
if ((m_type == Type::BandPass || m_type == Type::BandReject) && f1 >= f2) {
m_status = FilterStatus::BAD_BAND_FREQUENCY;
return;
}
if ((m_type == Type::LowPass || m_type == Type::HighPass) && f1 > fs / 2.) {
m_status = FilterStatus::BAD_CUTOFF_FREQUENCY;
return;
}
m_order = order;
m_fs = fs;
if (m_type == Type::LowPass || m_type == Type::HighPass)
computeDigitalRep(f1);
else
computeBandDigitalRep(f1, f2); // For band-like filters
resetFilter();
}
template <typename T>
void Butterworth<T>::computeDigitalRep(T fc)
{
// Continuous pre-warped frequency
T fpw = (m_fs / PI) * std::tan(PI * fc / m_fs);
// Compute poles
vectXc_t<T> poles(m_order);
std::complex<T> analogPole;
for (int k = 0; k < m_order; ++k) {
analogPole = generateAnalogPole(k + 1, fpw);
BilinearTransform<std::complex<T>>::SToZ(m_fs, analogPole, poles(k));
}
vectXc_t<T> zeros = generateAnalogZeros();
vectXc_t<T> a = VietaAlgo<std::complex<T>>::polyCoeffFromRoot(poles);
vectXc_t<T> b = VietaAlgo<std::complex<T>>::polyCoeffFromRoot(zeros);
vectX_t<T> aCoeff(m_order + 1);
vectX_t<T> bCoeff(m_order + 1);
for (int i = 0; i < m_order + 1; ++i) {
aCoeff(i) = a(i).real();
bCoeff(i) = b(i).real();
}
scaleAmplitude(aCoeff, bCoeff);
setCoeffs(std::move(aCoeff), std::move(bCoeff));
}
template <typename T>
void Butterworth<T>::computeBandDigitalRep(T fLower, T fUpper)
{
T fpw1 = (m_fs / PI) * std::tan(PI * fLower / m_fs);
T fpw2 = (m_fs / PI) * std::tan(PI * fUpper / m_fs);
T fpw0 = std::sqrt(fpw1 * fpw2);
vectXc_t<T> poles(2 * m_order);
std::pair<std::complex<T>, std::complex<T>> analogPoles;
for (int k = 0; k < m_order; ++k) {
analogPoles = generateBandAnalogPole(k + 1, fpw0, fpw2 - fpw1);
BilinearTransform<std::complex<T>>::SToZ(m_fs, analogPoles.first, poles(k));
BilinearTransform<std::complex<T>>::SToZ(m_fs, analogPoles.second, poles(m_order + k));
}
vectXc_t<T> zeros = generateAnalogZeros(fpw0);
vectXc_t<T> a = VietaAlgo<std::complex<T>>::polyCoeffFromRoot(poles);
vectXc_t<T> b = VietaAlgo<std::complex<T>>::polyCoeffFromRoot(zeros);
vectX_t<T> aCoeff(2 * m_order + 1);
vectX_t<T> bCoeff(2 * m_order + 1);
for (int i = 0; i < 2 * m_order + 1; ++i) {
aCoeff(i) = a(i).real();
bCoeff(i) = b(i).real();
}
if (m_type == Type::BandPass)
scaleAmplitude(aCoeff, bCoeff, std::exp(std::complex<T>(T(0), T(2) * PI * std::sqrt(fLower * fUpper) / m_fs)));
else
scaleAmplitude(aCoeff, bCoeff);
setCoeffs(std::move(aCoeff), std::move(bCoeff));
}
template <typename T>
std::complex<T> Butterworth<T>::generateAnalogPole(int k, T fpw1)
{
auto thetaK = [pi = PI, order = m_order](int k) -> T {
return (2 * k - 1) * pi / (2 * order);
};
std::complex<T> analogPole(-std::sin(thetaK(k)), std::cos(thetaK(k)));
switch (m_type) {
case Type::HighPass:
return T(2) * PI * fpw1 / analogPole;
case Type::LowPass:
default:
return T(2) * PI * fpw1 * analogPole;
}
}
template <typename T>
std::pair<std::complex<T>, std::complex<T>> Butterworth<T>::generateBandAnalogPole(int k, T fpw0, T bw)
{
auto thetaK = [pi = PI, order = m_order](int k) -> T {
return (2 * k - 1) * pi / (2 * order);
};
std::complex<T> analogPole(-std::sin(thetaK(k)), std::cos(thetaK(k)));
std::pair<std::complex<T>, std::complex<T>> poles;
std::complex<T> s0 = T(2) * PI * fpw0;
std::complex<T> s = T(0.5) * bw / fpw0;
switch (m_type) {
case Type::BandReject:
s /= analogPole;
poles.first = s0 * (s + std::complex<T>(T(0), T(1)) * std::sqrt(T(1) - s * s));
poles.second = s0 * (s - std::complex<T>(T(0), T(1)) * std::sqrt(T(1) - s * s));
return poles;
case Type::BandPass:
default:
s *= analogPole;
poles.first = s0 * (s + std::complex<T>(T(0), T(1)) * std::sqrt(T(1) - s * s));
poles.second = s0 * (s - std::complex<T>(T(0), T(1)) * std::sqrt(T(1) - s * s));
return poles;
}
}
template <typename T>
vectXc_t<T> Butterworth<T>::generateAnalogZeros(T fpw0)
{
switch (m_type) {
case Type::HighPass:
return vectXc_t<T>::Constant(m_order, std::complex<T>(1));
case Type::BandPass:
return (vectXc_t<T>(2 * m_order) << vectXc_t<T>::Constant(m_order, std::complex<T>(-1)), vectXc_t<T>::Constant(m_order, std::complex<T>(1))).finished();
case Type::BandReject: {
T w0 = T(2) * std::atan(PI * fpw0 / m_fs);
return (vectXc_t<T>(2 * m_order) << vectXc_t<T>::Constant(m_order, std::exp(std::complex<T>(0, w0))), vectXc_t<T>::Constant(m_order, std::exp(std::complex<T>(0, -w0)))).finished();
}
case Type::LowPass:
default:
return vectXc_t<T>::Constant(m_order, std::complex<T>(-1));
}
}
template <typename T>
void Butterworth<T>::scaleAmplitude(const vectX_t<T>& aCoeff, Eigen::Ref<vectX_t<T>> bCoeff, const std::complex<T>& bpS)
{
T num = 0;
T denum = 0;
switch (m_type) {
case Type::HighPass:
for (int i = 0; i < m_order + 1; ++i) {
if (i % 2 == 0) {
num += aCoeff(i);
denum += bCoeff(i);
} else {
num -= aCoeff(i);
denum -= bCoeff(i);
}
}
break;
case Type::BandPass: {
std::complex<T> numC(bCoeff(0));
std::complex<T> denumC(aCoeff(0));
for (int i = 1; i < 2 * m_order + 1; ++i) {
denumC = denumC * bpS + aCoeff(i);
numC = numC * bpS + bCoeff(i);
}
num = std::abs(denumC);
denum = std::abs(numC);
} break;
case Type::BandReject:
case Type::LowPass:
default:
num = aCoeff.sum();
denum = bCoeff.sum();
break;
}
bCoeff *= num / denum;
}
} // namespace fratio